.

Гниение белков в кишечнике биохимия

Гниение белков в кишечнике биохимия

Гниение белков в кишечнике биохимия

» Кишечник » Гниение белков в кишечнике биохимия

Уменьшение переваривания белков из-за низкой протеолитической активности в желудке (пониженная кислотность) или в кишечнике (хронические панкреатиты), нарушение целостности стенки кишечного тракта вследствие гельминтозов или неполной нейтрализации соляной кислоты (гиперацидный гастрит, нарушение желчевыделения) приводит к последствиям, которые отражаются на деятельности всего организма.

Пищевые аллергии

В раннем постнатальном периоде (у новорожденных и до 2-3 месяцев) проницаемость стенки кишечника у детей даже в норме повышена. Такая особенность обеспечивает проникновение антител молозива и материнского молока в кровь ребенка и создает младенцу пассивный иммунитет. Молозиво также содержит ингибитор трипсина, предохраняющий иммуноглобулины от быстрого гидролиза.

Однако при наличии неблагоприятных обстоятельств (гиповитаминозы, индивидуальные особенности, неправильное питание) проницаемость кишечной стенки возрастает и создается повышенный поток в кровь младенца пептидов коровьего молока, яиц и других веществ – развивается пищевая аллергия. Аналогичная ситуация может наблюдаться у старших детей и взрослых при нарушениях желчевыделения, при гельминтозах, дисбактериозах, поражении слизистой оболочки кишечника токсинами и т.п.

Некоторые пептидные участки альбумина коровьего молока и человеческого инсулина схожи между собой. Поэтому при переходе их через кишечный барьер у носителей антигенов главного комплекса гистосовместимости D3/D4 может возникнуть перекрестная иммунная реактивность и, как следствие, аутоиммунный ответ против собственных β-клеток островков Лангерганса. Считается, что в случае искусственного вскармливания младенцев это может привести к инсулинзависимому сахарному диабету.

Целиакия

Целиакия – наследственное прогрессирующее заболевание, приводящее к изменениям в тощей кишке: воспалению и сглаживанию слизистой оболочки, исчезновению ворсинок и атрофии щеточной каемки, к появлению кубовидных энтероцитов.

Причиной является врожденная непереносимость белка клейковины злаков глютена, или точнее – его растворимой фракции глиадина. Заболевание проявляется после введения в рацион младенца глиадин-содержащих продуктов, в первую очередь манной каши.

Патогенез заболевания до сих пор не выяснен, имеются гипотеза о прямом токсическом воздействии на стенку кишечника и гипотеза иммунного ответа на белок в стенке кишки.

Катаболизм аминокислот в толстом кишечнике

В некоторых ситуациях, а именно:

  • при ухудшении всасывания аминокислот,
  • при избытке белковой пищи,
  • при нарушении деятельности пищеварительных желез,
  • при снижении перистальтики кишечника (запоры)

аминокислоты и недопереваренные фрагменты белков достигают толстого кишечника, где подвергаются воздействию кишечной микрофлоры. Такой процесс получил название гниение белков в кишечнике. При этом образуются продукты разложения аминокислот, представляющие собой

  • токсины (аммиак, кадаверин, путресцин, крезол, фенол, скатол, индол, пиперидин, пирролидин, сероводород, метилмеркаптан (СН3SН) и другие),
  • нейромедиаторы (серотонин, гистамин, октопамин, тирамин, триптамин).

Всасываясь в кровь, эти вещества вызывают общую интоксикацию, колебания артериального давления, головные боли, понижение аппетита, понижение болевой чувствительности, анемии, миокардиодистрофии, нарушение желудочной секреции, в тяжелых случаях возможны угнетение дыхания, сердечной деятельности и кома.

Реакции превращения тирозина и триптофана Реакции првращения лизина и аргинина

Вы можете спросить или оставить свое мнение.

Download SocComments v1.3

biokhimija.ru

Превращения аминокислот под действием микрофлоры кишечника

Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот.

Микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих самые разнообразные превращения пищевых аминокислот.

В кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот: фенола, индола, крезола, скатола, сероводорода, метилмер-каптана, а также нетоксичных для организма соединений: спиртов, аминов, жирных кислот, кетокислот, оксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название «гниение белков в кишечнике».

Так, в процессе распада серосодержащих аминокислот (цистин, цистеин, метионин) в кишечнике образуются сероводород h3S и метил-меркаптан Ch4SH.

Диаминокислоты – орнитин и лизин – подвергаются процессу декарбоксилирования с образованием аминов – путресцина и кадаверина.

Из ароматических аминокислот: фенилаланин, тирозин и триптофан – при аналогичном бактериальном декарбоксилировании образуются соответствующие амины: фенилэтиламин, параоксифенилэтиламин (или тира-мин) и индолилэтиламин (триптамин).

Кроме того, микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частности тирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола.

После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсерная кислота или ска-токсилсерная кислота). Последние выделяются с мочой. Механизм обезвреживания этих продуктов изучен детально.

В печени содержатся специфические ферменты – арилсульфотрансфераза и УДФ-глюкоронилтран-сфераза, катализирующие соответственно перенос остатка серной кислоты из ее связанной формы – 3'-фосфоаденозин-5'-фосфосульфата (ФАФС) и остатка глюкуроновой кислоты также из ее связанной формы – уридил-дифосфоглюкуроновой кислоты (УДФГК) на любой из указанных продуктов.

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты. Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой (см. главу 18).

По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени. О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты (см. главу 16).

Таким образом, организм человека и животных обладает рядом защитных механизмов синтеза, биологическая роль которых заключается в обезвреживании токсичных веществ, поступающих в организм извне или образующихся в кишечнике из пищевых продуктов в результате жизнедеятельности микроорганизмов.

Предыдущая страница | Следующая страница

СОДЕРЖАНИЕ

www.xumuk.ru

23. Гниение белков и аминокислот в кишечнике. Пути образования продуктов гниения. Примеры

Не всосавшиеся аминокислоты поступают в толстую кишку, где подвергаются процессам гниения. Это процесс бактериального распада веществ под действием микрофлоры иди ферментов, вырабатывающихся этой микрофлорой, В норме в толстой кишке подвергаются аминокислоты, а при патологии – белки. Это происходит и в других отделах ЖКТ.

ПУТРЕСЦИН и КАДАВЕРИН являются токсическими веществами, входят в состав трупных ядов.

24. Механизм обезвреживания продуктов гниения белков. Роль фафс и удф-гк в этом процессе (конкретные примеры)

Все токсические вещества (индол, скатол, фенол), образующиеся при гниении, поступают в печень, где и происходит их обезвреживание. В печени имеется две системы, участвующие в обезвреживании этих веществ:

1. УДФГК – УРИДИНДИФОСФОГЛЮКУРОНОВАЯ К-ТА.

2. ФАФС – ФОСФОАДЕНОЗИНФОСФОСУЛЬФАТ.

Процесс обезвреживания – это процесс конъюгации токсических веществ с одной из этих систем и образование конъюгатов, которые являются уже нетоксическими веществами.

Индол предварительно подвергается ГИДРОКСИЛИРОВАНИЮ.

ИНДОКСИЛСУЛЬФАТ нейтрализуется и превращается в натриевую или калиевую соль.

Все эти вещества выводятся из организма с мочой. В норме реакция на индол должна быть отрицательна. При положительной реакции на индол – нарушена детоксикационная функция печени. Положительная реакция на ИНДИКАН наблюдается при очень активном гниении белков в толстом кишечнике.

25. Переаминирование и декарбоксилирование аминокислот. Химизм процессов, характеристика ферментов и коферментов. Образование амидов

1). Основной путь превращения аминокислот в тканях – это реакции ПЕРЕАМИНИРОВАНИЯ -реакции между АМИНО- и КЕТОКИСЛОТАМИ. Эти реакции катализирует фермент – АМИНОТРАНСФЕРАЗА. ТРАНСАМИНИРОВАНИЮ могут подвергаться все аминокислоты кроме ЛИЗ и ТРЕ. Наибольшее значение имеют AT, донорами аминогрупп которых являются АЛА, АСП, ГЛУ.

Роль реакций ТРАНСАМИНИРОВАНИЯ:

1. используются для синтеза заменимых аминокислот.

2. Является начальным этапом катаболизма аминокислот

3. В результате ТРАНСАМИНИРОВАНИЯ образуются альфа -КЕТОКИСЛОТЫ, которые включаются в гЛЮКОНЕОГЕНЕЗ.

4. Протекают в разных тканях, но более всего в печени. Определение активности AT имеет диагностическое значение в клинике. При избытке АЛАНИНА или недостатке АСПАРАГИНОВОЙ К-ТЫ:

1. АЛА + альфа-КГК ↔ ГЛУ + ПВК

2. ГЛУ + ЩУК ↔АСП + альфа-КГК

26.Декарбоксилирование аминокислот,роль витамина в6.Образование биогенных аминов

2).Реакции ДЕКАРБОКСИЛИРОВАНИЯ – разрушение СООН-группы с выделением СО2. При этом аминокислоты в тканях образуют биогенные амины, которые являются биологически активными веществами (БАВ):

1. НЕЙРОМЕДИАТОРОВ (СЕРЕТОНИН, ДОФАМИН, ГАМК),

2. Гормоны (АДРЕНАЛИН, НОРАДРЕНАЛИН),

3. Регуляторы местного действия ( ГИСТАМИН).

ГАМК является НЕИРОМЕДИАТОРОМ тормозного действия. ДОФАМИН является НЕИРОМЕДИАТОРОМ возбуждающего действия. Он является основой для синтеза АДРЕНАЛИНА и НОР АДРЕНАЛИНА.

ГИСТАМИН повышает секрецию желудочного сока, поэтому применяется в клинической практике при зондировании. Обладает сосудорасширяющим действием, понижает АД.

studfiles.net

Обезвреживание продуктов гниения белков в кишечнике

Аминокислоты, которые не всосались в кровь через слизистую оболочку тонкой кишки, подвергаются воздействию микроорганизмов в толстом кишечнике. При этом ферменты микроорганизмов расщепляют аминокислоты и превращают их в амины, жирные кислоты, спирты, фенолы и другие вещества, нередко ядовитые для организма.

Этот процесс иногда называют гниением белков в кишечнике. В его основе лежит декарбоксилирование аминокислот, при этом из аминокислот образуются биологические амины.

Так, из аминокислоты орнитина Nh3(Ch3)3CH(Nh3)COOH образуется путресцин h3N(Ch3)4Nh3 (токсическое вещество из группы полиаминов), из лизина h3N(Ch3).4CH(Nh3).

COOH образуется кадаверин Nh3(Ch3)5Nh3 (токсическое вещество из группы птомаинов).

Путресцин и кадаверин выводятся из организма с фекальными массами. В тех случаях, когда эти соединения попадают в кровь, они выводятся с мочой в неизмененном виде.

Из тирозина OHC6h5Ch3CH(Nh3)COOH образуется крезол СН3С6Н4ОН (производное  фенола, обладающее токсическими свойствами и специфическим неприятным запахом), а если процесс идёт дальше, то и фенол С6Н5ОН (карболовая кислота – гидроксибензол, производное бензола, токсическое вещество).

Из аминокислоты триптофана C13h20O2N2 образуются скатол NC₈H₆CH₃ (бесцветное кристаллическое вещество с очень неприятным запахом) и индол C8H7N (токсическое вещество со специфическим неприятным запахом).

При глубоком разрушении кишечными микроорганизмами серосодержащих аминокислот — цистина C6h22N2S2O4, цистеина HSCh3CH (Nh3) COOH и метионина Ch4SCh3Ch3CH (Nh3) COOH — образуется сероводород (h3S, газ с резким неприятным запахом), меркаптан (Ch4SH, летучее вещество с сильным удушливым запахом) и другие серосодержащие соединения.

Продукты гниения белков всасываются в венозную кровь, затем попадают в печень, где и обезвреживаются с помощью эндогенной серной кислоты или глюкуроновой кислоты. Индол и скатол также обезвреживаются в печени при участии серной и глюкуроновой кислот. Однако они предварительно окисляются: скатол в скатоксил, индол в индоксил и в виде парных кислот выводятся из организма с мочой.

Некоторые ядовитые вещества, например, бензойная кислота C6H5COOH, образующаяся из аминокислоты фенилаланина C3H5Ch3CH (Nh3) COOH, обезвреживаются в печени с помощью аминокислоты глицина. При этом образуется гиппуровая кислота C6H5CONh3Ch3COOH — безвредное соединение, которое выводится с мочой.

Возможности печени в обезвреживании продуктов гниения белков, образованных в толстом кишечнике и всосавшихся в кровь, не безграничны. При снижении ее функциональной способности (например, в связи с перенесенными ранее заболеваниями) поступление значительного количества ядовитых веществ может оказаться чрезмерной нагрузкой.

Тогда часть необезвреженных ядовитых веществ разносится (большим кругом кровообращения) по всему организму, вызывая его отравление. Происходит преждевременное старение клеток и их гибель. При этом отмечается ухудшение самочувствия человека, его мучают головные боли.

Для предупреждения негативного воздействия ядовитых веществ на организм необходимо рационально планировать пищевой рацион.

В него должны быть включены продукты, содержащие не только белки, но и жиры и углеводы, полезные кисломолочные продукты, так как молочнокислые бактерии способствуют ускорению гибели гнилостных микроорганизмов толстой кишки.

В рационе необходима пища, которая является источником пектиновых веществ и клетчатки, что, повышая двигательную активность кишечника, способствуют выведению шлаков (в том числе и ядовитых веществ) из организма.

«Обезвреживание продуктов гниения белков в кишечнике» — это вторая статья из цикла «Обмен белков в организме человека». Первая статья  — «Расщепление белков в пищеварительном тракте» Третья статья «Обмен аминокислот в тканях»

infection-net.ru

Источник: http://www.belinfomed.com/kishechnik/gnienie-belkov-v-kishechnike-biohimiya.html

Проблемы ЖКТ влияют на весь организм

Гниение белков в кишечнике биохимия

Уменьшение переваривания белков из-за низкой протеолитической активности в желудке (пониженная кислотность) или в кишечнике (хронические панкреатиты), нарушение целостности стенки кишечного тракта вследствие гельминтозов или неполной нейтрализации соляной кислоты (гиперацидный гастрит, нарушение желчевыделения) приводит к последствиям, которые отражаются на деятельности всего организма.

Детоксикация продуктов гниения

Обезвреживание токсических веществ, поступающих из толстого кишечника, происходит в печени с помощью двух систем:

  • система микросомального окисления,
  • система конъюгации.

Цель работы системы микросомального окисления заключается

  • в увеличении реакционной способности молекулы и ее возможности вступить в реакцию конъюгации,
  • в придании гидрофильности молекуле, что способствует ее выведению с мочой и отсутствию накопления в нервной и жировой ткани.

Цель работы системы конъюгации заключается

  • в маскировке реакционноспособных и токсичных групп (например, в феноле это ОН-группа).

Источник: https://biokhimija.ru/obmen-belkov/problemy-perevarivanija.html

Процессы гниения белков в кишечнике

Гниение белков в кишечнике биохимия

Строго говоря, речь идет о разнообразных превращениях свободных аминокислот, а не белков пищи, под действием микрофлоры нижнего отдела кишечника. Известно, что микроорганизмы кишечника для своего роста также нуждаются в доставке с пищей определенных аминокислот.

Кроме того, микрофлора кишечника располагает набором ферментных систем, отличных от соответствующих ферментов животных тканей и катализирующих разнообразные превращения пищевых аминокислот (окисление, восстановление, дезаминирование, декарбоксилирование, распад).

Благодаря этому в кишечнике создаются оптимальные условия для образования ядовитых продуктов распада аминокислот, в частности фенола, индола, крезола, скатола, сероводорода, метилмеркап- тана, а также нетоксичных для организма ряда других соединений — спиртов, аминов, жирных кислот, кетокислот, гидроксикислот и др.

Все эти превращения аминокислот, вызванные деятельностью микроорганизмов кишечника, получили общее название гниения белков в кишечнике.

Так, в процессе постепенного и глубокого распада серосодержащих аминокислот (цистина, цистеина и метионина) в кишечнике образуются сероводород (H2S) и метилмеркаптан (CH3SH).

Диаминокислоты, в частности орнитин и лизин, подвергаются процессу декарбоксилирования с образованием протеиногенных аминов (их иногда называют птомаинами, или трупными ядами, поскольку они образуются также при гнилостном разложении трупов).

Приведенная ниже схема дает представление о многообразии каналов, по которым используются аминокислоты после всасывания в кишечнике. Поступив через воротную вену в печень, они прежде всего подвергаются ряду превращений в этом органе, хотя значительная часть аминокислот разносится кровью по всему организму и используется для физиологических целей.

В печени аминокислоты используются не только для синтеза собственных белков и белков плазмы крови, но также для синтеза ряда специфических азотсодержащих соединений – пуриновых и пиримидиновых нуклеотидов, креатина, мочевой кислоты, НАД и др.

Печень обеспечивает, кроме того, сбалансированный пул свободных аминокислот организма путем синтеза незаменимых аминокислот и перераспределения азота в результате реакций трансаминирования.

Как видно из представленной схемы, всосавшиеся аминокислоты в первую очередь используются в качестве строительного материала для синтеза специфических тканевых белков, ферментов, гормонов и других биологически активных соединений.

Некоторое количество аминокислот подвергаются распаду с образованием конечных продуктов белкового обмена (С02, Н20 и NH3) и освобождением энергии.

Подсчитано, что в организме взрослого человека, находящегося на полноценной диете, освобождается примерно 1200 кДж в сутки за счет окисления около 70 г аминокислот (помимо пищевых, также эндогенных аминокислот, образующихся при гидролизе тканевых белков или синтезированных de novo из углеводов и липидов).

Это количество составляет около 10% суточной потребности организма человека в энергии. Количество аминокислот, подвергающихся распаду, зависит как от характера питания, так и от физиологического состояния организма.

Например, даже при полном голодании или при частичном белковом голодании с мочой выделяется небольшое, но определенное количество азотистых веществ, что свидетельствует о постоянстве процесса распада белков тела. Аминокислоты, как и белки, не накапливаются и не откладываются в тканях (наподобие жиров и гликогена) и у взрослого человека при нормальной обеспеченности пищевым белком поддерживается довольно постоянная концентрация аминокислот в крови (0,5 г/л или около 2,5 г во всем объеме крови).

Ранее было отмечено широкое участие природных аминокислот (точнее углеродных скелетов, колец и различных функциональных групп) в синтезе биологически активных соединений. О многообразии таких синтезов свидетельствует приведенная ниже схема:

Page 3

Несмотря на то, что почти для каждой аминокислоты выяснены индивидуальные пути обмена, известен ряд превращений, общих почти для всех аминокислот. К этим превращениям относятся реакции дезаминирования, транса- минирования, декарбоксилирования и рацемизации.

В организме человека подвергается распаду около 70 г аминокислот в сутки; при этом в результате дезаминирования, трансаминирования и окисления биогенных аминов освобождается большое количество аммиака, являющегося высокотоксичным соединением. Поэтому концентрация аммиака в организме должна сохраняться на низком уровне.

И, действительно, уровень аммиака в норме в крови не превышает 1-2 мг/л (это почти в 1000 раз меньше концентрации сахара в крови). На кроликах показано, что концентрация аммиака 50 мг/л является летальной.

Таким образом, аммиак должен подвергаться, связыванию в тканях с образованием нетоксичных соединений, легко выделяемых с мочой.

Одним из путей связывания и обезвреживания аммиака в организме, в частности в мозге, сетчатке, почках, печени и мышцах, является биосинтез глутамина (и, возможно, аспарагина).

Суммируя известные фактические данные о механизмах обезвреживания аммиака в организме, можно прийти к следующему заключению. Часть аммиака используется на биосинтез аминокислот путем восстановительного амини- рования а-кетокислот или реакции трансреаминирования. Аммиак используется в биосинтезе глутамина и аспарагина.

Некоторое количество аммиака выводится с мочой в виде аммонийных солей. В форме креатина, который образуется из креатина и креатинфосфата, выделяется из организма значительная часть азота аминокислот.

Однако наибольшее количество аммиака идет на синтез мочевины, которая выводится с мочой в качестве главного конечного продукта белкового обмена в организме человека и животных.

Подсчитано, что в состоянии азотистого равновесия организм взрослого здорового человека потребляет и соответственно выделяет 15 г азота; из экскретируемого с мочой количества азота на долю мочевины приходится около 85%, креатинина — около 5% (строго постоянная величина), аммонийных солей — 3%, мочевой кислоты — 1% и на другие формы -— около 6%.

Page 4

Одно из характерных нарушений азотистого обмена — белковая недостаточность, являющаяся следствием не только дефицита белка, но и ряда тяжелых заболеваний даже при достаточном поступлении белка с пищей.

Белковая недостаточность у человека развивается как при полном и частичном голодании, так и при приеме однообразного белкового питания, когда в диете преобладают белки растительного происхождения, биологическая ценность которых (соотношение отдельных аминокислот) значительно ниже ценности белков животного происхождения.

Результатом этих состояний являются развитие отрицательного азотистого баланса, гипопротеинемии (снижение концентрации белков до 5-3 %; в норме 6,5-8,5%) и нарушения коллоидно-осмотического и водносолевого обмена (развитие отеков).

При тяжелых формах пищевых дистрофий, например при квашиоркоре — заболевании, довольно распространенном среди детей в развивающихся странах, наблюдаются тяжелые поражения печени, остановка роста, резкое снижение сопротивляемости организма инфекциям, отечность, атония мышц. Болезнь часто заканчивается летально.

Одним из наиболее ранних нарушений азотистого обмена при белковой недостаточности является резкое снижение интенсивности процессов дезаминирования, трансаминирования и биосинтеза аминокислот, а также синтеза мочевины в печени.

Оказалось, что эти нарушения обусловлены недостаточным синтезом и разрушением белковой части ферментов, катализирующих эти реакции; исключение составляет аргиназа, активность которой при этом почти не нарушена.

Следствием этих нарушений являются накопление значительных количеств аминокислот в крови, экскреций с мочой свободных аминокислот (до 10-25%, в норме — 1-2%) и резкое снижение образования и выделения мочевины с мочой. Первичные нарушения обмена отдельных аминокислот обычно наступают вследствие блокирования действия какого-либо фермента. В ряде случаев имеет место резкое отставание умственного развития.

Page 5

Как известно, живой организм и условия его существования находятся в постоянной зависимости от условий окружающей среды.

Выше было указано, что обмен веществ в организме человека протекает не хаотично, а «тонко настроен». Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом.

В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогуморальными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот.

Все они объединены в единый процесс метаболизма, подчиняющийся закономерностям взаимозависимости и взаимообусловленности, допускающими также взаимопревращения между отдельными классами органических веществ.

Однако, помимо взаимных переходов между разными классами веществ в организме, доказано существование более сложных форм связи. В частности, интенсивность, направление любой химической реакции определяются ферментами, т. е. белками, которые оказывают прямое влияние на обмен липидов, углеводов и нуклеиновых кислот.

В свою очередь синтез любого фермента — белка – требует участия ДНК и почти всех трех типов рибонуклеиновых кислот – тРНК, мРНК и рРНК.

Если к этому добавить влияние гормонов, продуктов распада какого-либо одного класса веществ (например, биогенных аминов) на обмен других классов органических веществ, то становятся понятными удивительная согласованность и координированность огромного разнообразия химических процессов, совершающихся в организме.

Основные пути взаимопревращения белков, жиров и углеводов схематически представлены ниже.

Помимо прямых переходов метаболитов этих классов веществ друг в друга, существует тесная энергетическая связь, когда энергетические потребности организма могут обеспечиваться окислением какого-либо одного класса органических веществ при недостаточном поступлении с пищей других. Существенность белков (в частности, ферментов, гормонов и др.) в обмене всех типов химических соединений слишком очевидна и не требует доказательств.

Получены доказательства синтеза глюкозы из большинства аминокислот. В некоторых случаях (аланин, аспарагиновая и глютаминовая кислоты) эта связь является непосредственной, в других – она осуществляется через побочные каналы.

Следует особо подчеркнуть, что три а-кетокислоты (пируват, ок- салоацетат и кетоглутарат), образующиеся соответственно из аланина, аспарта- та и глутамата, не только служат исходным материалом для синтеза глюкозы, но и являются своеобразными катализаторами в превращении ацетильных остатков от всех классов пищевых веществ в цикле Кребса для образования энергии. Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме не происходит. Этим объясняется незаменимость белков для человека и животных. В то же время организм может нормально развиваться при одностороннем белковом питании, а также свидетельствует о возможности синтеза углеводов из белков.

Энергетическая ценность пищи оказывает определенное влияние на белковый обмен, контролируемый азотистым балансом.

Так, если потребляемая энергия пищи находится ниже минимального уровня, то наблюдается увеличение экскреции азота, и, наоборот, при увеличении калорийности пищи экскреция азота с мочой снижается.

Калорийность пищи, следовательно, является лимитирующим фактором в утилизации пищевых белков.

Таким образом, преобладание распада одних питательных веществ и биосинтеза других прежде всего определяется физиологическим состоянием и потребностями организма в энергии и метаболитах. Этими факторами в значительной степени может быть объяснено существование постоянного динамического состояния химических составных компонентов организма как единого целого.

Источник: https://studref.com/439319/matematika_himiya_fizik/protsessy_gnieniya_belkov_kishechnike

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.